
Lecture 28: List Decoding Hadamard Code and
Goldreich-Levin Hardcore Predicate

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

Recall

Let H : {0, 1}n → {+1,−1}
Let:
Lε = {S : χS agrees with H at (1/2 + ε) fraction of points}
Given oracle access to H output a list L ∈ 2[n] such that: For
all S ∈ Lε, we have: Pr[S ∈ L] > 1/2. The probability here is
over the internal randomness of the algorithm generating L

This procedure is identical to list decoding of Hadamard Code
(Hadamard code is a linear code that maps the message
S ⊆ [n] to χS ∈ {+1,−1}2n)

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

Basic Example

Let H be a oracle that agrees with χS at every x ∈ {0, 1}n

function Basic-Decode(H)
for i from 1 to n do

ai = H(ei)
end for
Output (a1, . . . , an)

end function

Reconstruction of S : If ai = −1 then i ∈ S ; otherwise i 6∈ S

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

Unique Decoder

Let H be an oracle that agrees with χS (for some S ⊆ [n]) at
some 3/4 + ε fraction of inputs

function Unique-Decode(H)
for i from 1 to n do

for j from 1 to t do
Choose ri ,j

$←{0, 1}n
Let ai ,j = H(ri ,j + ei) · H(ri ,j)

end for
Let ai = Maj{ai ,1, . . . , ai ,t}

end for
Output (a1, . . . , an)

end function

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

Analysis of Unique Decoder

Let Ei ,j = 1(ai,j=χS (ei))

Note that Pr[Ei ,j = 0] 6 (1/4− ε) + (1/4− ε) = 1/2− 2ε
and, for each i , the Ei ,js are i.i.d. variables
So, ai = χS(ei) except with probability exp(−Θ(t/ε2)). Using
t = Θ

(
1
ε

2 log n
)
we can make this failure probability 1/n2

So, ai = χS(ei) for all i ∈ [n], except with probability 1/n

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

List Decoder

Consider any S ∈ Lε

Given H that agrees with χS at 1/2 + ε fraction of inputs, we
want to mimic another more precise oracle H̃ that agrees with
7/8 fraction of inputs
And we will successfully mimic H̃ with probability at least 3/4
So, given access to H̃, the unique decoder can recover S ,
except with probability 1/n
So, we recover S with probability 3/4− 1/n > 1/2

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

Mimicking the More Precise Oracle in a Hypothetical World

Consider S ∈ Lε

function Mimic-Hypothetical(H)
for i ∈ [α] do

Sample xi
$←{0, 1}n

Assume that we have magically obtained bi = χS(xi)
end for
Define the following oracle H̃:
function H̃(H, z)

for j ∈ [α] do
ai = H(z + xi) · bi

end for
Return a = Maj{a1, . . . , aα}

end function
end function

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

Analysis of Mimicking

Note that ai = χS(a) with probability 1/2 + ε

Since ai s are i.i.d. we have that a = χS(z), except with
probability exp(−Θ(α/ε2))

So, choosing α = O(1/ε2) we can achieve the correctness
probability to be 31/32
Formally:

Pr
z,x1,...,xα

[a = χS(z)] > 31/32

Using averaging-argument:

Pr
x1,...,xα

[
Pr
z

[a = χS(z)] > 7/8
]
> 3/4

Summary: Over the random choices of x1, . . . , xα we succeed
with probability at least 3/4 in implementing an oracle H̃ that
agrees with χS at at least 7/8 fraction of inputs

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

Partial Solution

We enumerate all 2O(1/ε2) possible b1, . . . , bα bits
And we execute unique decoding algorithm with the
corresponding H̃ oracle
Add the output of the unique decoding algorithm to the list L

The list size is at most 2O(1/ε2) and for all S ∈ Lε, with
probability > 1/2 we have S ∈ L

This procedure is inefficient if 1/ε is super-logarithmic in n

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

Changing the Analysis of the Mimicking Algorithm

We do not need {a1, . . . , aα} to be i.i.d.
We just need them to be pairwise-independent
In this case, we can apply Chebyshev’s inequality
The probability of a 6= χS(z) is defined as follows: Let
Xi = ai · χS(z)

Pr

∑
i∈[α]

Xi 6
α

2

 6 Pr

∣∣∣∣∣∣
∑
i∈[α]

Xi −
(
1
2

+ ε

)
α

∣∣∣∣∣∣ 6 εα


6

Var
[∑

i∈[α] Xi

]
ε2α2 = Θ

(
1
ε2α

)
Choose α = O(1/ε2) we can make the success probability
> 31/32 as earlier

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

Pairwise-Independent Distributions

Let u1, . . . , uβ be uniform random strings from {0, 1}n

Let v1, . . . , vβ be particular values of elements in {+1,−1}
Let α = 2β − 1
Interpret every i ∈ [α] as the characteristic vector of the
subset of [β]

Define xi := ⊕k∈i uk , for i ∈ [α]

Define bi :=
∏

k∈i vk , for i ∈ [α]

Note that xi and xi ′ are pairwise independent for i 6= i ′

Similarly, note that ai and ai ′ are pairwise independent for
i 6= i ′

To perform the “mimicking algorithm” choose random
u1, . . . , uβ and enumerate all possible v1, . . . , vβ

The number of possible enumerations is 2β = α+ 1 = O(1/ε2)

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

Time Complexity

We have O(1
ε2

) iterations for each setting of v1, . . . , vβ

Each iteration of unique decoding takes O(1
ε2
n log n) time

Overall time-complexity: O(1
ε4
n log n)

The list size is 6 2β = O(1
ε2

)

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

Goldreich-Levin Hardcore Predicate

Lemma (Hardcore Lemma)

Let f : {0, 1}n → {0, 1}m be a one-way function. Let X and R be a
uniform random strings from {0, 1}n. Then, given (f (X),R) no
polynomial time algorithm cannot predict B := R · X with
ε > 1/poly(n) advantage.

B = R · X is known as the hardcore predicate
Proof Idea: Proof by Contradiction. Given an adversary that
predicts B , we use the adversary as an oracle to recover x
using the list-decoding algorithm described previously

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

Proof

Suppose there exists an adversary A that, given (f (X),R), can
predict the random variable B with ε = 1/poly(n) advantage

Pr
x ,r

[A(f (x), r) = r · x] > (1/2 + ε)

Using an averaging argument:

Pr
x

[
Pr
r

[A(f (x), r) = r · x] > (1/2 + ε/2)
]
> ε/2

Call such an input x as a good input
Conditioned on a good input x , the adversary A is an oracle
that agrees with the function χx at (1/2 + ε/2) fraction of
inputs
Using this oracle, recover x from the list L with probability 1/2
in poly(m + n + 1/ε) time using Goldreich-Levin
List-Decoding Algorithm
With probability (ε/2) · (1/2) we successfully recover x in
polynomial time and violate the one-way-ness of f

Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

