Lecture 28: List Decoding Hadamard Code and
Goldreich-Levin Hardcore Predicate

o F

Lecture 28: List Decoding Hadamard Code and Goldreich-|

DA



Recall

o Let H: {0,1}" — {+1,-1}

o Let:

L. = {S: xs agrees with H at (1/2 + ¢) fraction of points}

@ Given oracle access to H output a list L € 2" such that: For
all S € L., we have: Pr[S € L] > 1/2. The probability here is
over the internal randomness of the algorithm generating L

@ This procedure is identical to list decoding of Hadamard Code
(Hadamard code is a linear code that maps the message
S C[n] to xs € {+1,-1}*")
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Basic Example

o Let H be a oracle that agrees with s at every x € {0,1}"

function Basic-Decode(H)
for j from 1 to n do
a; = H(e,-)
end for
Output (a1,...,an)
end function

@ Reconstruction of S: If a; = —1 then j € S; otherwise i ¢ S
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Unique Decoder

@ Let H be an oracle that agrees with xs (for some S C [n]) at
some 3/4 + ¢ fraction of inputs

function Unique-Decode(H)
for i from 1 to n do
for j from 1 to t do
Choose r;j < {0,1}"
Let ajj= H(I’,"j + e,-) . H(I’,"j)

end for

Let a; = Maj{aj1,...,ai+}
end for
Output (a1,...,an)

end function

Lecture 28: List Decoding Hadamard Code and Goldreich-|



Analysis of Unique Decoder

o Let £ij = 1(5=xs(e))

o Note that Pr[E;j =0] < (1/4—¢)+(1/4—¢)=1/2—2¢
and, for each i, the E; s are i.i.d. variables

e So, a; = xs(e;) except with probability exp(—©(t/£?)). Using
t=0 (%2 log n) we can make this failure probability 1/n?

@ So, a; = xs(ej) for all i € [n], except with probability 1/n
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List Decoder

e Consider any S € L.

o Given H that agrees with xs at 1/2 + ¢ fraction of inputs, we
want to mimic another more precise oracle H that agrees with
7/8 fraction of inputs

o And we will successfully mimic H with probability at least 3/4

@ So, given access to H, the unique decoder can recover S,
except with probability 1/n
@ So, we recover S with probability 3/4 —1/n > 1/2
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Mimicking the More Precise Oracle in a Hypothetical World

@ Consider S € L,

function Mimic-Hypothetical(H)
for i € [a] do
Sample x; < {0,1}"
Assume that we have magically obtained b; = xs(x;)
end for
Define the following oracle H:
function H(H, z)
for j € [a] do
aj = H(Z+Xi) - b;
end for
Return a = Maj{a1,..., a0}
end function
end function
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Analysis of Mimicking

o Note that a; = xs(a) with probability 1/2 + ¢

@ Since ajs are i.i.d. we have that a = xs(z), except with
probability exp(—©(a/£?))

@ So, choosing a = O(1/£2) we can achieve the correctness
probability to be 31/32

e Formally:
Pr [a= xs(z)] > 31/32

Z,X] ey X,
@ Using averaging-argument:

Pr P;r[a =xs(2)] >7/8| >3/4

X1 yeeesXax

@ Summary: Over the random choices of xi, ..., x, we succeed
with probability at least 3/4 in implementing an oracle H that
agrees with ys at at least 7/8 fraction of inputs
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Partial Solution

We enumerate all 20(1/=%) possible by, . . ., b, bits

And we execute unique decoding algorithm with the
corresponding H oracle

@ Add the output of the unique decoding algorithm to the list L

The list size is at most 20(1/¢%) and for all S € L., with
probability > 1/2 we have S € L

This procedure is inefficient if 1/¢ is super-logarithmic in n
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Changing the Analysis of the Mimicking Algorithm

e We do not need {aj,...,a,} to bei.i.d.
@ We just need them to be pairwise-independent
@ In this case, we can apply Chebyshev's inequality

@ The probability of a # xs(z) is defined as follows: Let

Xi=aj-xs(z)
E Xi < 2 E Xi — ( +5> < ex
2
i€[a] i€la]

= €202 2a

i ()

o Choose o = O(1/£?) we can make the success probability
> 31/32 as earlier
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Pairwise-Independent Distributions

o Let uy,...,up be uniform random strings from {0, 1}"

@ Let vi,...,vg be particular values of elements in {+1, -1}

o leta=2°—1

@ Interpret every i € [a] as the characteristic vector of the
subset of [f]

@ Define x; := @e; uk, for i € []

o Define bj := [],¢; vk, for i € [a]

@ Note that x; and x; are pairwise independent for i # i’/

@ Similarly, note that a; and a;; are pairwise independent for

i

@ To perform the “mimicking algorithm” choose random
ui,...,ug and enumerate all possible vy, ..., v3

@ The number of possible enumerations is 2° = o +1 = O(1/£?)
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Time Complexity

e We have O(i) iterations for each setting of vq,..., v3

e Each iteration of unique decoding takes O( = nlog n) time
@ Overall time-complexity: O(Tnlog n)

o The list size is < 2° = O(%)
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Goldreich-Levin Hardcore Predicate

Lemma (Hardcore Lemma)

Let f: {0,1}" — {0,1}" be a one-way function. Let X and R be a
uniform random strings from {0,1}". Then, given (f(X), R) no
polynomial time algorithm cannot predict B := R - X with

e > 1/poly(n) advantage.

@ B=R- X is known as the hardcore predicate

@ Proof Idea: Proof by Contradiction. Given an adversary that
predicts B, we use the adversary as an oracle to recover x
using the list-decoding algorithm described previously
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Proof

Suppose there exists an adversary A that, given (f(X), R), can
predict the random variable B with ¢ = 1/poly(n) advantage

Pr[A(f(x),r)=r-x] = (1/2+¢)
Using an averaging argument:
Pr [Pr[A(f(x), P=r-x>1/2+¢/2)| >¢/2

Call such an input x as a good input

Conditioned on a good input x, the adversary A is an oracle
that agrees with the function y at (1/2 + £/2) fraction of
inputs

Using this oracle, recover x from the list L with probability 1/2
in poly(m + n+ 1/¢) time using Goldreich-Levin
List-Decoding Algorithm

With probability (¢/2) - (1/2) we successfully recover x in
polynomial time and violate the one-way-ness of f
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