Lecture 28: List Decoding Hadamard Code and Goldreich-Levin Hardcore Predicate

- Let $H:\{0,1\}^{n} \rightarrow\{+1,-1\}$
- Let:

$$
L_{\varepsilon}=\left\{S: \chi_{S} \text { agrees with } H \text { at }(1 / 2+\varepsilon) \text { fraction of points }\right\}
$$

- Given oracle access to H output a list $L \in 2^{[n]}$ such that: For all $S \in L_{\varepsilon}$, we have: $\operatorname{Pr}[S \in L] \geqslant 1 / 2$. The probability here is over the internal randomness of the algorithm generating L
- This procedure is identical to list decoding of Hadamard Code (Hadamard code is a linear code that maps the message $S \subseteq[n]$ to $\chi_{S} \in\{+1,-1\}^{2^{n}}$)

Basic Example

- Let H be a oracle that agrees with χs at every $x \in\{0,1\}^{n}$
function Basic-Decode(H)
for i from 1 to n do

$$
a_{i}=H\left(e_{i}\right)
$$

end for
Output $\left(a_{1}, \ldots, a_{n}\right)$
end function

- Reconstruction of S : If $a_{i}=-1$ then $i \in S$; otherwise $i \notin S$

Unique Decoder

- Let H be an oracle that agrees with χ_{S} (for some $S \subseteq[n]$) at some $3 / 4+\varepsilon$ fraction of inputs
function Unique-Decode (H)
for i from 1 to n do
for j from 1 to t do
Choose $r_{i, j} \stackrel{\$}{\leftarrow}\{0,1\}^{n}$
Let $a_{i, j}=H\left(r_{i, j}+e_{i}\right) \cdot H\left(r_{i, j}\right)$
end for
Let $a_{i}=\operatorname{Maj}\left\{a_{i, 1}, \ldots, a_{i, t}\right\}$
end for
Output $\left(a_{1}, \ldots, a_{n}\right)$
end function

Analysis of Unique Decoder

- Let $E_{i, j}=\mathbf{1}_{\left(a_{i, j}=\chi_{S}\left(e_{i}\right)\right)}$
- Note that $\operatorname{Pr}\left[E_{i, j}=0\right] \leqslant(1 / 4-\varepsilon)+(1 / 4-\varepsilon)=1 / 2-2 \varepsilon$ and, for each i, the $E_{i, j}$ s are i.i.d. variables
- So, $a_{i}=\chi_{S}\left(e_{i}\right)$ except with probability $\exp \left(-\Theta\left(t / \varepsilon^{2}\right)\right)$. Using $t=\Theta\left(\frac{1}{\varepsilon}^{2} \log n\right)$ we can make this failure probability $1 / n^{2}$
- So, $a_{i}=\chi_{S}\left(e_{i}\right)$ for all $i \in[n]$, except with probability $1 / n$
- Consider any $S \in L_{\varepsilon}$
- Given H that agrees with χ_{S} at $1 / 2+\varepsilon$ fraction of inputs, we want to mimic another more precise oracle \widetilde{H} that agrees with 7/8 fraction of inputs
- And we will successfully mimic \widetilde{H} with probability at least $3 / 4$
- So, given access to \widetilde{H}, the unique decoder can recover S, except with probability $1 / n$
- So, we recover S with probability $3 / 4-1 / n \geqslant 1 / 2$

Mimicking the More Precise Oracle in a Hypothetical World

- Consider $S \in L_{\varepsilon}$
function Mimic-Hypothetical (H)
for $i \in[\alpha]$ do
Sample $x_{i}{ }^{\varsigma}\{0,1\}^{n}$
Assume that we have magically obtained $b_{i}=\chi_{s}\left(x_{i}\right)$
end for
Define the following oracle \widetilde{H} :
function $\widetilde{H}(H, z)$
for $j \in[\alpha]$ do

$$
a_{i}=H\left(z+x_{i}\right) \cdot b_{i}
$$

end for
Return $a=\operatorname{Maj}\left\{a_{1}, \ldots, a_{\alpha}\right\}$
end function
end function

Analysis of Mimicking

- Note that $a_{i}=\chi s(a)$ with probability $1 / 2+\varepsilon$
- Since $a_{i} s$ are i.i.d. we have that $a=\chi_{S}(z)$, except with probability $\exp \left(-\Theta\left(\alpha / \varepsilon^{2}\right)\right)$
- So, choosing $\alpha=O\left(1 / \varepsilon^{2}\right)$ we can achieve the correctness probability to be $31 / 32$
- Formally:

$$
\operatorname{Pr}_{z, x_{1}, \ldots, x_{\alpha}}\left[a=\chi_{S}(z)\right] \geqslant 31 / 32
$$

- Using averaging-argument:

$$
\operatorname{Pr}_{x_{1}, \ldots, x_{\alpha}}\left[\operatorname{Pr}_{z}\left[a=\chi_{S}(z)\right] \geqslant 7 / 8\right] \geqslant 3 / 4
$$

- Summary: Over the random choices of $x_{1}, \ldots, x_{\alpha}$ we succeed with probability at least $3 / 4$ in implementing an oracle \widetilde{H} that agrees with χ_{S} at at least $7 / 8$ fraction of inputs
- We enumerate all $2^{O\left(1 / \varepsilon^{2}\right)}$ possible $b_{1}, \ldots, b_{\alpha}$ bits
- And we execute unique decoding algorithm with the corresponding \widetilde{H} oracle
- Add the output of the unique decoding algorithm to the list L
- The list size is at most $2^{O\left(1 / \varepsilon^{2}\right)}$ and for all $S \in L_{\varepsilon}$, with probability $\geqslant 1 / 2$ we have $S \in L$
- This procedure is inefficient if $1 / \varepsilon$ is super-logarithmic in n

Changing the Analysis of the Mimicking Algorithm

- We do not need $\left\{a_{1}, \ldots, a_{\alpha}\right\}$ to be i.i.d.
- We just need them to be pairwise-independent
- In this case, we can apply Chebyshev's inequality
- The probability of $a \neq \chi_{S}(z)$ is defined as follows: Let

$$
X_{i}=a_{i} \cdot \chi_{S}(z)
$$

$$
\begin{aligned}
\operatorname{Pr}\left[\sum_{i \in[\alpha]} X_{i} \leqslant \frac{\alpha}{2}\right] & \leqslant \operatorname{Pr}\left[\left|\sum_{i \in[\alpha]} X_{i}-\left(\frac{1}{2}+\varepsilon\right) \alpha\right| \leqslant \varepsilon \alpha\right] \\
& \leqslant \frac{\operatorname{Var}\left[\sum_{i \in[\alpha]} X_{i}\right]}{\varepsilon^{2} \alpha^{2}}=\Theta\left(\frac{1}{\varepsilon^{2} \alpha}\right)
\end{aligned}
$$

- Choose $\alpha=O\left(1 / \varepsilon^{2}\right)$ we can make the success probability $\geqslant 31 / 32$ as earlier

Pairwise-Independent Distributions

- Let u_{1}, \ldots, u_{β} be uniform random strings from $\{0,1\}^{n}$
- Let v_{1}, \ldots, v_{β} be particular values of elements in $\{+1,-1\}$
- Let $\alpha=2^{\beta}-1$
- Interpret every $i \in[\alpha]$ as the characteristic vector of the subset of $[\beta]$
- Define $x_{i}:=\oplus_{k \in i} u_{k}$, for $i \in[\alpha]$
- Define $b_{i}:=\prod_{k \in i} v_{k}$, for $i \in[\alpha]$
- Note that x_{i} and $x_{i^{\prime}}$ are pairwise independent for $i \neq i^{\prime}$
- Similarly, note that a_{i} and $a_{i^{\prime}}$ are pairwise independent for $i \neq i^{\prime}$
- To perform the "mimicking algorithm" choose random u_{1}, \ldots, u_{β} and enumerate all possible v_{1}, \ldots, v_{β}
- The number of possible enumerations is $2^{\beta}=\alpha+1=O\left(1 / \varepsilon^{2}\right)$
- We have $O\left(\frac{1}{\varepsilon^{2}}\right)$ iterations for each setting of v_{1}, \ldots, v_{β}
- Each iteration of unique decoding takes $O\left(\frac{1}{\varepsilon^{2}} n \log n\right)$ time
- Overall time-complexity: $O\left(\frac{1}{\varepsilon^{4}} n \log n\right)$
- The list size is $\leqslant 2^{\beta}=O\left(\frac{1}{\varepsilon^{2}}\right)$

Goldreich-Levin Hardcore Predicate

Lemma (Hardcore Lemma)

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ be a one-way function. Let X and R be a uniform random strings from $\{0,1\}^{n}$. Then, given $(f(X), R)$ no polynomial time algorithm cannot predict $B:=R \cdot X$ with $\varepsilon \geqslant 1 / \operatorname{poly}(n)$ advantage.

- $B=R \cdot X$ is known as the hardcore predicate
- Proof Idea: Proof by Contradiction. Given an adversary that predicts B, we use the adversary as an oracle to recover x using the list-decoding algorithm described previously
- Suppose there exists an adversary A that, given $(f(X), R)$, can predict the random variable B with $\varepsilon=1 / \operatorname{poly}(n)$ advantage

$$
\operatorname{Pr}_{x, r}[A(f(x), r)=r \cdot x] \geqslant(1 / 2+\varepsilon)
$$

- Using an averaging argument:

$$
\operatorname{Pr}_{x}\left[\operatorname{Pr}_{r}[A(f(x), r)=r \cdot x] \geqslant(1 / 2+\varepsilon / 2)\right] \geqslant \varepsilon / 2
$$

Call such an input x as a good input

- Conditioned on a good input x, the adversary A is an oracle that agrees with the function χ_{x} at $(1 / 2+\varepsilon / 2)$ fraction of inputs
- Using this oracle, recover x from the list L with probability $1 / 2$ in poly $(m+n+1 / \varepsilon)$ time using Goldreich-Levin List-Decoding Algorithm
- With probability $(\varepsilon / 2) \cdot(1 / 2)$ we successfully recover x in polynomial time and violate the one-way-ness of f

